skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tachambalath, A.P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. During International Ocean Discovery Program Expedition 354, seven sites were drilled along a 320 km east–west transect at 8°N, constituting a relic of the Neogene sediment record of Himalayan erosion. Bengal Fan is one of the largest deep-sea fans in the world where turbiditic sediments issued from the Ganga and Brahmaputra River Delta and originally supplied by the Himalayan erosion of silicate and carbonate lithologies are deposited and stored. Quantification of the chemical composition of silicates and carbonates is necessary to understand the tectonoclimatic history of this region. This report presents the major and trace element concentrations of silicate and carbonate fractions of selected turbiditic samples from Sites U1450 and U1451. Efficient washing followed by refined acid leaching of the sediments was performed to eliminate sea salts and carbonates from these marine sediment samples. Shipboard samples show 20%–40% excess sodium concentration associated with sea salt derived from pore water. Weak acid treatment limits the total carbonate content in the samples to less than 0.1%. Depletion of major and trace elements observed due to acid leaching is attributed to the dissolution of carbonates and cations associated with Fe-Mn oxyhydroxides. 
    more » « less